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Polychronous kinetics is a property of a wide variety
of elementary chemical and physical solid-phase pro-
cesses characterized by a rate constant spectrum (distri-
bution) [1, 2]. This kind of single-reactant processes
includes first order reactions (bimolecular reactions in
an excess of one reactant and monomolecular reac-
tions) whose kinetics deviates from the first-order law.
These include the reactions of radicals with alcohol
glass matrices [1], the geminal recombination of radical
pairs in polymers [2] and electron–ion pairs in organic
glasses [3], heterogeneous reactions [4], and fluores-
cence and phosphorescence in solids [5].

The existence of a rate constant distribution for a
given A  B reaction is explained by the existence of
a broad spectrum of activation barriers of different
heights and widths in the solid phase [1]. Since the
reactivity of the reactant in this case cannot be charac-
terized by a single rate constant, attempts are made to
find some universal form of kinetic curves for polychr-
omous reactions and to develop methods for determin-
ing the rate constant distributions characterizing the
reaction kinetics [1–8]. Many ways of representing
polychromous kinetics have been suggested. These
include fitting some portions of kinetic curves to a lin-
ear relationship between the concentration 

 

c

 

 and 

 

ln

 

t

 

,
where 

 

t

 

 is the reaction time [1, 2]; to the square-root
time dependence of the rate constant, 

 

k

 

 ~ 

 

t

 

–1/2

 

 [1]; to the
Kohlrausch function [6]; and to the sum of two or three
exponentials, as in the case of a reaction consisting of
two or three independent processes [5]. The most uni-
versal representation of polychromous kinetics found
to date is a series containing a sufficiently large number
of terms [8, 9].

 

This arbitrariness in describing the reaction kinetics
leads to ambiguity concerning the distributions derived
from experimental data [8]. Earlier, we suggested a
high-accuracy method for determining the rate constant
distributions in polychronous reactions. It was demon-
strated that, even if the accuracy of the experimental
data is very high, the distribution derived from these
data will be one of the multiple, often diametrically
opposite, solutions of the inverse problem and that the
invariants of these solutions can be used to obtain an
unambiguous estimate of reactivity [9]. We assumed
that kinetically inequivalent states of the reacting parti-
cle do not mix. However, in systems in which molecu-
lar motion changes the spatial distribution of the parti-
cles, their conformational states and structure, and the
molecular mobility of their environment, random tran-
sitions from one state into another in the rate constant
spectrum (spectral diffusion) are significant. These
transitions must exert an effect on the reaction kinetics.

There was an attempt to evaluate the effect of spec-
tral diffusion on polychromous kinetics [10], but the
resulting approximate solution, which was obtained as
the sum of two exponentials, is inadequate for describ-
ing the reaction kinetics. Here, we consider a model of
a polychromous reaction under spectral diffusion con-
ditions and make at attempt to obtain an exact solution
for this model.

GENERAL SCHEME OF THE REACTION

In the most general case, a first-order reaction
passes through 

 

N

 

 kinetically inequivalent states and

 

Polychronous Kinetics with Diffusion
over the Reaction State Spectrum

 

A. L. Margolin

 

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119991 Russia
e-mail: almar@sky1.chph.ru

 

Received August 31, 2006

 

Abstract

 

—The unsteady- and steady-state kinetics of a polychronous first-order reaction with discrete and con-
tinuous state distributions under spectral diffusion conditions are considered. An analysis of the model has dem-
onstrated that a quasi-steady-state regime is established in the course of the reaction. In this regime, the shape
of the distribution function stops changing and the reaction kinetics obeys an exponential law and can be char-
acterized by a single, average rate constant. Equations are set up for the reaction state distribution and average
rate constant in the quasi-steady-state regime. The limits of the kinetic and quasi-steady-state regimes are deter-
mined as a function of the spectral diffusion coefficient. The unsteady-state kinetics and the quasi-steady state
time depend strongly on the initial state distribution.

 

DOI: 

 

10.1134/S0023158408020018



 

162

 

KINETICS AND CATALYSIS

 

      

 

Vol. 49

 

      

 

No. 2

 

      

 

2008

 

MARGOLIN

 

transitions between these states take place according to
the following scheme [10–12]:

 

C

 

i

 

  

 

products

 

,

 

C

 

i

 

  

 

C

 

j

 

,

 

i

 

, 

 

j

 

 = 1, 2, …, 
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where 

 

k

 

i

 

 is the rate constant of the reaction of the 

 

i

 

th
state (

 

C

 

i

 

) and 

 

ω

 

j i

 

 is the rate constant of the transition of
molecules from the 

 

i

 

th state into the 

 

j

 

th state (or the
transition frequency, which is the reciprocal of the time
interval between transition events). Hereafter, the rate
constants are numbered in increasing order.

The system of reactions (I) is described by the fol-
lowing set of differential equations for the change of
the state concentrations 

 

c

 

i

 

:

 

(1)

 

In matrix notation, this set of equations takes the simple
form of

 

(2)

 

where the elements of the matrix 

 

A

 

 are defined as

 

(3)

 

The way of solving the set of equations (2) is well
known: introduce a symmetrical matrix 

 

A

 

'

 

 whose diag-
onal elements are the same as in the matrix 

 

A

 

 and
whose nondiagonal elements are defined as 
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. The solution will then appear as

 

(4)

 

where 
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 is the fraction of the 

 

i

 

th state in the equilibrium
distribution of states, 

 

r

 

n

 

 are the eigenvalues of the
matrix 

 

A

 

'

 

 (numbered in increasing order), 

 

B

 

 is the
matrix of the eigenvectors (normalized) corresponding
to the eigenvalues of the matrix 

 

A

 

'

 

, and the coefficients

 

q

 

n

 

 are determined from the following initial condition:
at 

 

t

 

 = 0, 

 

c

 

i

 

(0) = 

 

a

 

i

 

 (the initial distribution of states).
The total concentration 

 

c

 

 as a function of time is
found by summation of Eq. (4) over all states:

 

(5)

 

The equation for the average rate constant 

 

〈

 

k

 

(
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〉

 

 is
obtained by simple summation of Eq. (1):

 

(6)

 

Note that, in the general case of more complex reac-
tions, there can be eigenvalues with an imaginary part
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and, accordingly, chemical oscillations [13]. However,
a polychronous reaction is described by the symmetri-
cal matrix A', whose eigenvalues are all real, like the
eigenvalues of any symmetrical matrix with real ele-
ments.

Equation (5) shows that the kinetic curve of a poly-
chromous reaction with or without spectral diffusion
can be represented as the sum of exponentials. Thus,
the case of a reaction with spectral diffusion and with a
set of rate constants ki, can be reduced to the familiar
case of a reaction without diffusion and with a set of
rate constants rn [9]. Therefore, the results obtained for
a reaction without state mixing [9] are applicable to
polychromous reactions with state mixing.

Another specific feature of polychromous reactions
with spectral diffusion is the possibility of a quasi-
steady-state regime. It follows from Eqs. (4) and (5)
that, at sufficiently long reaction times, only the term
with the smallest eigenvalue r1 will be significant in the
sum of exponentials. The state concentration ratio ci/c
in Eq. (6) will stop changing, and the reaction kinetics
will obey an exponential law.

In a reaction without state mixing, the reaction
kinetics also becomes exponential at long times, but for
another reason: only the state with the smallest rate
constant k1 remains at the latest stages of the reaction
because of the successive “burnout” of more reactive
states. Rate constants in real systems typically vary
over a wide range of several orders of magnitude.
Therefore, the fraction of the least active state is small
and the kinetics of a reaction without spectral diffusion
remains nonexponential until very high conversions.

CONTINUOUS REACTION STATE 
DISTRIBUTION MODEL

If the reactivity-determining state of the reacting
particle includes a large number of molecules from its
cage environment, then small displacements or rota-
tions of one of them will cause insignificant changes in
this state and in the corresponding rate constant. A
small hop of the particle into an adjacent cage will also
change the rate constant only slightly. We will assume
that the molecule hops mainly from the state Ci into the
nearest states Ci – 1 and Ci + 1 with equal probabilities of
ωi/2. The kinetics equation (1) will then appear as

(7)

(8)

(9)

Now let us consider the case of ωi = ω = const. When
the distance between the adjacent states, ∆ = ki + 1 – ki,

dci
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is sufficiently short, we can pass to a continuous distribu-
tion density ρ(k) such that ci = ρ(ki)∆. By the Taylor
expansion of ρ(ki – ∆) and ρ(ki + ∆) in the vicinity of ki
up to the terms of the second order of smallness (∆2), we
obtain, from Eqs. (7)–(9), the basic kinetic equation

(10)

subject to the boundary conditions

(11)

where D is the spectral diffusion coefficient and kmin
and kmax are the minimum and maximum rate constants,
respectively. It can readily be seen that Eq. (10) is the
Einstein–Smoluchowski diffusion equation, which is
widely used in the description of reactive diffusion
[14]. In the case considered here, this equation
describes reactive diffusion not in the physical space,
but in the rate-constant space, and differs from the con-
ventional diffusion equation in that its spatial variable
is in explicit form. It is very difficult to solve this equa-
tion in a way suitable for analysis [10]. For this reason,
the problem was solved in two steps. The first step is an
analysis of the steady-state solution, which can be
obtained in comparatively simple form, and the second
step is numerical search for unsteady-state solutions.

Let us first consider fairly long reaction times,
when, as follows from Eq. (5), all states begin to disap-

∂ρ k( )
∂t

-------------- kρ k( )– D
∂2ρ k( )

∂k2
----------------, D+ ω∆2

2
----------= =

∂ρ
∂k
------

k kmin=

∂ρ
∂k
------

k kmax=

0,= =

pear with the same quasi-steady-state rate constant kq,
which is equal to the smallest eigenvalue r1:

(12)

Thus, in the quasi-steady-state regime,

(13)

Let us introduce the dimensionless variable x:

This will transform Eq. (13) into the familiar Airy equa-
tion [15, 16]:

(14)

Its general solution appears as

ρ(x) = α1[Ai(x – xq) + α2Bi(x – xq)], (15)

where Ai(x) and Bi(x) are the Airy functions of the first
and second kinds. α1 and α2 are constants, α1 is deter-
mined by ρ(x) normalization, and α2 and xq are deter-
mined from the boundary conditions (11).

The quasi-equilibrium distributions calculated using
Eq. (15) for several xmax values are plotted in Fig. 1. In
the case of a narrow distribution (xmax < 1), when D is
large, there is no concentration gradient in the k-space,
all states mix rapidly, and the distribution is equilib-
rium. However, starting at xmax = 2, an appreciable gra-

∂ρ k( )
∂t

-------------- kqρ k( ).–=

D
∂2ρ
∂k2
-------- k kq–( )ρ.=

x
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D1/3
-----------------, xq

kq kmin–

D1/3
-------------------.= =

∂2ρ
∂x2
-------- x xq–( )ρ.=

Fig. 1. State distribution ρ(x) in the (a–e) quasi-steady-state and (f) kinetic regimes at maximum dimensionless rate constant values
of xmax = (a) 50, (b) 10, (c) 5, (d) 3, (e) 2, and (f) 1.
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dient appears and the reaction passes to the quasi-
steady-state regime. Physically, this regime is simply a
diffusion regime in the rate constant k-space. In this
regime, a boundary layer appears near the left edge of
the rate constant spectrum and its shape remains almost
invariable as xmax is further increased.

The dependence of quasi-steady-state rate constant xq
on xmax is plotted in Fig. 2. At equilibrium (at xmax < 1),
xq is proportional to xmax (xq = xmax/2), so kq is equal to
the equilibrium rate constant. At quasi-equilibrium
(xmax > 2) xq = 1.019 (the first zero of the first derivative
of Ai(x)) and is independent of the distribution width
xmax. Hence, the averaged rate constant and the spectral
diffusion coefficient are related as follows:

(17)

As D decreases, the quasi-steady state regime termi-
nates once kq has decreased to a value of the order of
kmin, when spectral diffusion does not exert any signifi-
cant effect on the reaction. Thus, the quasi-steady-state
regime has the following limits:

(18)

It follows from (18) that, at kmax � kmin, the quasi-
steady-state regime exists in a wide range of diffusion
coefficients.

It is clear from Eq. (17) that, in the case of a broad
distribution, when kmin is very small, the quasi-steady-
state rate constant of the polychronous reaction is
almost completely determined by spectral diffusion:

(19)

When in the boundary layer, the particle travels,
during the reaction time (which is equal to 1/kq), the

kq
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2
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2
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⎪
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=
(16)
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3 D
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2
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⎛ ⎞

3
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kq D1/3.=

distance (2D/kq)1/2 = 21/2kq, which is comparable with
the thickness of this layer. Therefore, in the time inter-
val between the reaction events, the molecule can visit
any point of the boundary layer. This ensures mixing
necessary for exponential-law kinetics to take place and
for the independence of the reaction of its history.

For numerical calculation of the unsteady-state
kinetics using Eq. (10), we will introduce the dimen-
sionless time t* = tD1/3 and the reduced function
ρ*(x, t) = ρ(x, t)exp(kmint). Equation (10) will then
appear as

Its general solution, which can be obtained by sepa-
ration of variables, is as follows:

where the constant coefficients Gn are derived from the
initial conditions and the eigenvalues rn are derived
from the boundary conditions (11). As follows from the
general properties of the Sturm–Liouville problem
[16], all rn are positive real numbers.

Figure 3a shows the distribution ρ(x) calculated
using Eq. (10) for a monodisperse initial state distribu-
tion (curve 1). At the initial stages of the reaction
(t* = 1), spectral diffusion disorders the initial distribu-
tion (curve 2), generating states with both smaller and
larger rate constants. At long reaction times of t* > 3, a
quasi-steady-state distribution forms (curve 3), whose
shape does not depend on time any longer and is deter-
mined by the equilibrium between the diffusion and
reaction processes in the boundary layer.

Using the distributions calculated by Eq. (10), it is
possible to calculate the current concentration c(t) and
the average rate constant 〈x(t)〉:

(20)

(21)

The current concentration data (c) calculated using
Eq. (20) for different initial distributions are plotted in
Fig. 3b. Curve 1 represents the case in which the initial
rate constant is 〈x(0)〉 = 0.1 and is below the quasi-
steady-state value xq = 1. In this case, spectral diffusion
has the most pronounced effect on the reaction kinetics,
causing an increase in the rate constant during the pro-
cess, a phenomenon unnatural for first-order reactions.
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Fig. 2. Relationship between the quasi-steady-state rate
constant kq and the spectral diffusion coefficient D.
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If the reaction starts from any distribution with an
initial rate constant of 〈x(0)〉 = xq = 1, the relaxation of
the system to the quasi-steady-state distribution will not
be accompanied by noticeable changes of the rate con-
stant and the kinetics will obey the exponential law
(Fig. 3b, curve 2). If the initial rate constant is larger
than xq, the kinetic curve will take a shape typical of
polychronous reactions (Fig. 3b, curve 3).

The current rate constant data (〈x(t)〉) data calcu-
lated using Eq. (21) for different initial distributions are
plotted in Fig. 3c. Clearly, the reaction kinetics depends
strongly on the initial conditions. However, after some
period of time, the system comes to a quasi-steady state
independent of the initial conditions. This period of
time also depends strongly on the initial distribution
and lies in the range of t* = 0–2. For this reason, the
quasi-equilibrium time in this system characterizes the
initial state distribution rather than spectral diffusion.

DISCUSSION

The above results demonstrate that a polychronous
reaction can show much diversified kinetics at its early
stages: the average rate constant can either decrease or
increase, depending on the initial state distribution. Of
interest is the case in which the rate constant is almost
invariable throughout the reaction. This will be
observed when the initial rate constant is equal to kq.
This intuitively understandable inference was not veri-
fied analytically. It was obtained by numerical integra-
tion of Eq. (10) for different initial distributions with
〈x(0)〉 = 1. According to these calculations, the current
rate constant varies slightly (within a few percent) with
reaction time; however, these variations are undetect-
able at conventional degrees of experimental accuracy.

The strong dependence of the quasi-equilibrium
time on the initial state distribution is a nontrivial find-
ing. For more general systems, the relaxation times are
estimated as a function of the reaction constants [13].

An important feature of polychronous reactions
controlled by spectral diffusion is the establishment of
a quasi-steady state regime characterized by exponen-
tial-law kinetics and by a quasi-steady-state rate con-
stant independent of the initial reaction conditions. The
physical essence of this phenomenon is as follows. If
the states of the reacting particles are initially distrib-
uted in a wide rate constant range such that the diffu-
sion time is much shorter than the reaction time, then,
due to the reaction taking place, the distribution will
begin to “burn out” from the side of large rate constants,
as if there were no diffusion at all. As a consequence,
the distribution will narrow, and, accordingly, the time
of diffusion over the remaining states will shorten. This
process will continue until the diffusion time is equal to
the reaction time. As a result, the reaction and spectral
diffusion processes will be equilibrated in the narrow
rate constant range of the final distribution.

An inherent property of polychronous reactions,
particularly those occurring at low temperatures, is
strong unsteadiness, such that the process occurs in an
unsteady-state regime over a reactant concentration
range as wide as two orders of magnitude [1]. There-
fore, the determination of the quasi-steady-state rate
constant can be a complicated problem at low concen-
trations, when the measurement error is much larger. In
this case, changing the initial conditions (for example,
by enriching the state distribution with less reactive
states) can modify the kinetic curves so as to increase
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Fig. 3. Unsteady-state kinetics at a maximum dimension-
less rate constant of xmax = 10. (a) State distributions ρ(x) at
t* = (1) 0, (2) 1, and (3) >4. (b) Kinetic curves for a mono-
disperse initial state distribution with 〈x〉 = (1) 0.1, (2) 1, and
(3) 3. (c) Time dependence of the averaged dimensionless
rate constant for (1–4) monodisperse initial state distribu-
tions with 〈x〉 = (1) 0.1, (2) 1, (3) 3, and (4) 5 and (5) a rect-
angular initial state distribution with 〈x〉 = 5.
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the reactant concentrations in the quasi-steady-state
regime.

As was demonstrated above, the kinetic curves of
polychronous reactions with and without spectral diffu-
sion may have the same shape, so it is difficult to judge
the role of spectral diffusion from the reaction kinetics.
Additional information from independent experiments
is necessary here. Spectral diffusion must be mani-
fested most clearly in kinetic curves in which the rate
constant increases with time. This is the case when, at
the initial point in time, all particles are in low-reactiv-
ity states with rate constants smaller than kq. In this
case, the establishment of an equilibrium generates
more active states, thus raising the average rate con-
stant.

The corresponding kinetic curve will be described
by a sum of exponentials containing terms with both
positive and negative coefficients. It is interesting that
this kind of kinetics was observed in naproxen fluores-
cence decay [17]. The negative values of the distribu-
tion function derived from kinetic data cannot be
accounted for in the framework of the existing under-
standing of polychronous reactions, but they can
readily be explained by the effect of spectral diffusion.
Initially, the probability of the naproxen singlet being
deactivated is below its steady-state value. In the course
of the reaction, it increases up to the steady-state value
as a result of spectral diffusion.
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